Math Department Colloquium

Sara Billey (University of Washington)

Title: Reduced words and a formula of Macdonald

Abstract: Macdonald gave a remarkable formula connecting a weighted sum of reduced words for a permutation with the number of terms in a Schubert polynomial.  We will review some of the fascinating results on the set of reduced words in order to put our main results in context. Then we will discuss a new bijective proof  of Macdonald's formula based on Little's bumping algorithm.  

We will also discuss some generalizations of this formula based on work of Fomin, Kirillov, Stanely and Wachs. This project extends earlier work by Benjamin Young on a Markov process for reduced words of the longest permutation.

This is joint work with Ben Young and Alexander Holroyd.  

Friday, September 22, 2017 at 3:30pm to 4:30pm

Levan Center, 201
2322 N Kenmore Ave

Event Type

Speaker/Presenters

Departments

College of Science and Health, Mathematical Sciences

Website

https://sites.math.washington.edu/~bi...

Subscribe
Google Calendar iCal Outlook

Recent Activity

© 2001-2017 DePaul University | Contact Us | Emergency Plan | Consumer Info | IBHE | Privacy Statement | Terms of Use |